Non-invasive sensors for cattle farming in agro-ecological conditions

Miklos BISZKUP
Hungarian Research Institute of Organic Agriculture
HUNGARY
MNVH PROJECT

SESSION 6: AGROECOLOGY AND DIGITALISATION

#AEEUForum2023
BACKGROUND

Várvolgy, Zala county, Hungary

• Experiment started spring 2021

• Living Lab (On-Farm) Research

• Large number of animals
 (120 cows, 100 calves, breeding bulls)

• 180 hectares Natura 2000 pasture

• Sensors for cattle are available mainly for intensively kept dairy

• The main goal is to promote digital tools in extensive meat cattle farming
METHODS

Sensors

- All sensors are NON INVASIVE
- 6 types, 700 pieces altogether
- Allflex-MSD neck and ear transponders
- ENGS pedometers
- Moonsyst rumen boluses
- Moovement GPS
Data collecting
METHODS

Data collecting
The algorithm of the sensors have to learn the actual animal.
RESULTS
Example on animal health

- Morning report
- J0003 not ruminating
- Found on pasture sick, rounded up
- Diagnosed: Rumen function stopped
- Received treatment: rumen starter medicine
- Ability to follow the recovery
THANK YOU

For your attention

- More results from Petra
The importance of using digital technologies in pasture-based beef cattle farming

Petra BALOGH
Hungarian Research Institute of Organic Agriculture
HUNGARY
MNVH PROJECT

SESSION 6: AGROECOLOGY AND DIGITALISATION

#AEEUFORum2023
RESULTS

Knowledge of pasture condition

• Transponder rumination data

• Individual/Herd level observation

• Optimal: 400-600 minutes/day

• Information on the quantity of grass

• The need to change pastures

• Maintaining good condition

*Pc = Pasture change
RESULTS

Indication of heat stress

- Alarm when the *panting* of the herd reach 10%
- 8-9% of the herd were panting at May
- Pasture maintenance
- Closed, woody and bushy areas

TH Index value in the examined grazing season was under 75
Weak medium heat stress factor
Feedback of meteorological effects

• Increased rumination after rainy period
 Precipitation increases grass production

• Decreased rumination during rainy weather and in the periods of drought
 Lower fiber content

Advisable to use supplementary fibre feeding for grazing herds during these periods
RESULTS

Feedback of meteorological effects

• Increased rumination after rainy period
 Precipitation increases grass production

• Decreased rumination during rainy weather and in the periods of drought
 Lower fiber content

Advisable to use supplementary fibre feeding for grazing herds during these periods
CONCLUSION

Using of digital tools in pasture based systems

Overall, sensors help "make the invisible visible."

The rumination is a very good indicator for monitoring the health status -> animal welfare!

Sensors help to plan grazing more correctly and help to optimise the use of rotational grazing -> environmental protection of grasslands (Natura 2000)

The use of sensors supports decision-making in pasture management
THANK YOU
For your attention!

Petra BALOGH
petra.balogh@biokutatas.hu

Miklós BISZKUP
miklos.biszkup@biokutatas.hu

https://www.biokutatas.hu/en