December 2022

Position paper

COOPERATE WITH NATURE OR PERISH¹:

THE URGENT NEED TO ADOPT AN AMBITIOUS EUROPEAN LAW TO REDUCE PESTICIDES USE AND TO PROMOTE AGROECOLOGY

[¹] UN Secretary-General’s remarks to High-Level opening of COP27
In June 2022, the Commission published the revision of the Sustainable Use of Pesticides Directive (SUD), now called the Proposal for a Regulation COM(2022)305 on the sustainable use of plant protection products (SUR). In line with the Farm to Fork Strategy of the EU Green Deal, the objectives stated in this proposal are to halve the use and risk of pesticides in Europe by 2030 and to have a very limited use of these substances in protected natural areas.

The war in Ukraine has cast doubts about the feasibility and consequences of the Farm to Fork Strategy, in particular about its capacity to ensure food security in the short and long term in Europe and worldwide. Many in the Council and the European Parliament have invoked these flawed narratives, disregarding all the scientific evidence on the real risks to humanity’s food security, mainly climate change, biodiversity loss and land degradation. Indeed, the European Council voted on 19 December 2022 on requesting the European Commission to provide a complementary impact assessment to the existing one on the sustainable use of plant protection products, causing delays in the implementation of the law.

In this context, where attempts to jeopardize this important legislation so central to ensure the sustainability of our food system are frequent, Agroecology Europe insists on the necessity to implement a coherent and ambitious legislation on the reduction of pesticides use in Europe. This must be accompanied by real and effective support policies for farmers to shift from chemical-intensive agriculture towards knowledge-intensive agriculture and to diversify their production system, making it more resilient and autonomous through independent and effective farm advisory services.

This paper aims to give an overview of the Commission’s legislative proposal, with an agroecological and systemic approach, and to provide recommendations for improvements to make the legislation more consistent. It also aims to highlight the wide range of scientific evidence that shows that, in the light of the climate and biodiversity crises, the most convincing solution to ensure long-term global food security lies in the implementation of agroecology, improving agroecosystems by harnessing natural processes, creating beneficial biological interactions and synergies and using, in the best way, ecological processes and ecosystem services.
The recent cost-benefit analysis study concerning the pesticide sector carried out by the think-tank BASIC shows that at the EU level, the costs directly incurred by pesticides - about €2.3 billion to society in 2017 - are almost twice as high as the net benefits by the industry. Furthermore, European farmers purchased €12 billion worth of pesticides in 2019 and the EU exported €5.8 billion worth of pesticides in the same year - many of them banned in Europe. These costs incurred by the purchase of synthetic agrochemicals undermines the economic viability of EU farms. Therefore, public policies supporting the sector make no sense in terms of public spending. The consequences of this pesticide lock-in are not only economic.

The drastic loss of biodiversity, and in particular of insect and bird biodiversity on farmlands due to the extensive use of pesticides, represents a major risk to food security. Insects play an essential role in farming systems through pollination, decomposition of organic matter, regulation of pests, etc - many ecosystem services that are being lost due to the use of synthetic pesticides. It is important to support farmers in the development of a dense ecological network on their farm, especially through the adoption of landscape structures and (semi-)natural features.

Finally, the serious consequences of pesticides on human health are no longer to be proven, and cause damages to both producers and consumers. There are strong social demands for proactive policies to reduce the risk and use of pesticides, as evidenced by the recently approved European Citizens Initiative Save Bees and Farmers, which gathered more than 1 million signatures from EU citizens.

The SUR entails a high level of protection for human health and the environment in the transition to a sustainable food system, which involves a reduction in dependence on synthetic pesticides and a redesign of the EU’s farming and food systems. Ambitious and legally binding reduction targets in pesticide use and risks will also support the achievement of various other EU environmental goals such as those enshrined in the Water Framework Directive 2000/60/EC and the Habitats Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora.

Reducing the use and systemic dependence on external synthetic pesticides should be part of a systemic approach enabling the redesign of farming and food systems. Not only farmers, but all food system stakeholders - including farm advisors, upstream and downstream suppliers, consumers - need to take action to make the changes necessary to achieve the objectives set out in this regulation. This is why we encourage the Commission, Parliament and Member States to adopt a systemic approach on farming and food system redesign rather than less ambitiously targeting specific crops and optimising the use of pesticides, and therefore consider broader measures to support the actions required by this regulation.

We therefore insist on the importance of integrating agroecology in this Regulation proposal formulated by the Commission. This can be achieved through the following key points:

- Agroecology and agroecological practices should be clearly defined and mentioned as a solution into the SUR proposal (Art. 3).
- An adapted set of indicators to monitor the use and risks of pesticides should be implemented (Chapter IX).
- Farm advisory services should be developed to properly support farmers in the redesign of their farming systems and the phasing-out of synthetic inputs (Art. 26).
- The policy consistency between the SUR and other key agricultural policies - in particular the Common Agricultural Policy - should be ensured.
2.1. AGROECOLOGY EUROPE CALLS ON ADDING A DEFINITION OF AGROECOLOGY INTO THE SUR PROPOSAL (ART. 3)

Agroecology is one approach that, by designing agroecosystems that rely on ecological processes for the prevention and control of pests, weeds and disease outbreaks, shares the same aims of Integrated Pest Management and organic farming. Agroecology also includes societal and economic aspects that support and connect producers and consumers.

‘Agroecological practices means practices aiming at improving agroecosystems by harnessing natural processes, creating beneficial biological interactions and synergies, and using, in the best way, ecological processes and ecosystem services for the development and implementation of agricultural practices.

KEY AGROECOLOGICAL PRACTISES REDUCING THE DEPENDENCY ON SYNTHETIC INPUTS

- Restore soil life through reduced or no-tillage;
- Continuous soil cover;
- Direct seeding of main crops into cover crops;
- The development of a dense ecological network;
- The choice of climate-resilient crop species, cultivars and mixtures;
- Intercropping (including agroforestry);
- Long and diversified crop rotations;
- Crop/livestock integration that allows the inclusion of legume-based temporary grasslands in annual crop rotations;
- Rotational grazing;
- The use of rustic livestock breeds in grass-based systems;
We regret that the Commission defines precision farming (see figure 1) as the tool to reduce pesticide dependency and presents biological pest control methods as a unique alternative to fight pests and diseases. Agroecological practices such as long crop rotations, the insertion of legumes in rotations, soil cover, reduced tillage, the implementation of an ecological network and the synergy between crop and livestock systems are key practices that enable the use of ecological mechanisms that can significantly reduce pesticide use while maintaining similar yields\(^0\) and improving the economic performance of European farms\(^\text{11}\) (see box 1).

Unlike agroecological practices, precision agriculture does not allow farmers to structurally reduce the pesticide dependency, thus reinforcing a **lock-in effect on the use of pesticides**\(^\text{12}\). Precision agriculture increasingly requires the use of advanced technologies which are costly and may be unprofitable for farmers, especially for medium and small farms. They can therefore accelerate the bankruptcy of family farms and marginalise the cultural heritage and traditional know-how associated with them. The significant investment that precision farming can require for producers to fully implement the technologies can also represent a major obstacle to the transition to sustainable agriculture and food systems. European farms are already subject to overcapitalisation, which makes it difficult to transfer them to the next generation. Agroecology Europe recalls the importance of considering the social, cultural, economic and environmental impacts associated with certain technologies and stresses the several limits of the so-called techno-fixes to improve the sustainability of food systems.

\(^\text{12}\) Neumaster, L. (2022). Locked-in Pesticides: The European Union’s dependency on harmful pesticides and how to overcome it. Foodwatch
2.2 AGROECOLOGY EUROPE CALLS FOR THE IMPLEMENTATION OF AN ADAPTED SET OF INDICATORS TO MONITOR THE USE AND RISKS OF PESTICIDES (CHAPTER IX)

Agroecology Europe recalls that the adoption of **relevant indicators and transparent data collection systems at the EU level to monitor the use and risks of pesticides is central to accompany the change of practices across Europe toward more sustainability.**

In this regard, the harmonised risk indicators (HRI 1 and 2) as described in Annex VI - COM(2022)305 - measuring the amount of active substance sold multiplied by a risk factor - should be substantially improved as they are not suited for measuring pesticide use and toxicity. These indicators do not take into account the land area treated. The risk factor varies according to the legal status of the active substances and therefore does not reflect their science-based toxicological risks.

Without improvement of this indicator, the whole regulation and the objective of reducing pesticide use will be seriously affected as the HRI will not allow to measure progress in reducing pesticide use, exposure and toxicity. We invite the EU co-legislators to improve the set of indicators mentioned in the SUR and to draw on more comprehensive indicators such as the Number of Dose Unit” (NODU)\(^\text{[13]}\) developed by the French authorities to monitor the progress in achieving their national action plan for the reduction of pesticides.

[\text{[13]}](https://agriculture.gouv.fr/quest-ce-que-le-nodu)
2.3. AGROECOLOGY EUROPE CALLS FOR THE DEVELOPMENT OF INDEPENDENT FARM ADVISORY SERVICES THAT PROPERLY SUPPORT FARMERS IN THE REDESIGN OF THEIR FARMING SYSTEMS AND PHASING-OUT OF CHEMICAL INPUTS (ART. 26)

Agroecology implies a shift from chemical-intensive agriculture towards knowledge-intensive agriculture. Providing appropriate technical support and training for farmers through the development of independent farm advisory services all over Europe is therefore a key element for a drastic pesticide reduction policy in Europe. Agroecology Europe welcomes the Commission's proposal to set up independent Farm Advisory Services as formulated in Art. 26, decoupled from upstream and downstream industries having an economic interest in the production and sale of pesticides and synthetic fertilisers.

Farm Advisory Services must include and focus on innovative practices, agricultural techniques for resilience to climate change and to restore biodiversity, including agroforestry and agroecological approaches as mentioned in art. 15 of new CAP Regulation 2021/2115.

2.4. THE POLICY CONSISTENCY BETWEEN THE SUR AND OTHER KEY AGRICULTURAL POLICIES - IN PARTICULAR THE COMMON AGRICULTURAL POLICY - MUST BE INSURED

Agroecology Europe calls upon the Commission to ensure that the budget of the Common Agricultural Policy is targeted to support farmers technically and financially in the adoption of agroecological practices and the phasing out of pesticide uses. In that sense, it is particularly important to strengthen the eco-schemes and pillar 2 measures of the CAP.
CONCLUSIONS: SUPPORTING THE DIVERSIFICATION OF EUROPEAN PRODUCTION SYSTEMS TO BREAK THE LOCK-IN EFFECT ON PESTICIDE’S DEPENDENCY

There is abundant scientific literature evidencing that agroecology can ensure European and global food security\(^4\). Diversification of agro-ecosystems is a key to developing greater resilience of agro-ecosystems to disturbances, reducing pest outbreaks and conserving biodiversity\(^5\).

It is high time that EU policy makers pay more attention to the many scientific evidences and inspiring examples of farmers who have successfully reduced their dependence on pesticides and built the resilient, autonomous and sustainable food and farming systems that Europe urgently needs.

In view of the revision of the EU legislation on new genomic techniques scheduled for 2023, Agroecology Europe insists on the fact that techno-fixes are no credible answers to the systemic crises we need to face to ensure long-term food security.

Political support for reducing the use of synthetic pesticides and - more generally - for building more autonomous and resilient farming and food systems is the most effective, if not the only way to ensure food security and the continuous provision of ecosystem services in the short, medium and long term in Europe and worldwide.

Funded by the European Union, Fondation de France and Fondation Ecotone. This publication reflects the views and opinions of the authors only. Neither the European Commission, CINEA, the Fondation de France, nor the Fondation Ecotone can be held responsible for them or any use which may be made of the information contained therein.