Trócaire's Agroecology Research in Western Guatemala 2016-2017

Rose Hogan¹, Raquel Leon² and Adele Tibaldeschi³

¹ Sustainable Agriculture Adviser, ² and ³ Trocaire, Guatemala

www.trocaire.org

2017
Global Food Systems crisis - Trocaire’s framing of the solution.

1. Global Policy :- A work in progress, preparing a new strategy for
 Challenging the dominant business as usual and Sustainable intensification models.

2. Global Programmes;-
 Adopting Transformative Agroecological approaches in a rights-based manner.
Trócaire's Strategic Goal 2

- People living in poverty, particularly women, exercise their right to access and control natural resources and benefit from the sustainable use and management of those resources
Trocaire defines its agricultural approach as transformative and agroecological

1. Transforming power relations in the agriculture and food system and

2. Mimicking the natural ecology /ecosystem
Mimicking and retaining the natural system e.g. the forest
Mimicking the forest ecosystem
Guatemala
Yield Concept Shifts

• Optimal Yield vs Maximum Yield

• Whole farm yield vs individual crop yield

• Edible Yield vs Saleable yield

Nicaragua, Cinco Pinos
Trocaire is not so worried about dominant discourses (in black below) – happy to change (in red below) the narratives.

• **Shifting from ‘subsistence to commercial agriculture’**, we are more concerned about self-sufficiency.

• **Changing from ‘traditional to modern agriculture’** - we are more concerned with what practices are sustainable from whatever knowledge source.

• Not so critical about rain-fed agriculture - we are more interested in making rain-fed work better.

• Not just concerned with farm production – we also want to consider wild foods which are very important in rural diets but fast being lost.
What does Transformative Agriculture look like?

El Salvador Drought 2013/4 (credit Jose’ Adan Cuadra)

• Top photo;-
 Business as Usual monoculture. Maize crop wilted, no harvest.

• Bottom photo;-
 Transformative, maize still green and some harvest. Pawpaw and other fruits to eat.
Guatemala 2015

Business as Usual
Maize Pinus spp. system

Transformative
Long-cycle agroforestry
Transformative - El Salvador uplands
Rainfall 300mm per annum but
something to eat or sell every day of the year.

Multi-storey coffee and food forest.

Wild green vegetable leaves from the understory.
So why do research on agroecology?

- Very little research happening globally. Virtually no public research funding for agroecology.
- Hard to convince our financial supporters, partners and farmers without scientific evidence.
- Want to be sure we are on the right track
- Learn from agroecological farms
Research question

What impact does the adoption of agroecological approaches make to the nutrition security and climatic resilience of farming households?
Approach and methodology

- Literature review of methodologies.
- Conscious that interdisciplinary approach needed. MESMIS framework very useful.
- Inspired by the Holt-Gimenez et al. study following Hurricane Mitch.
- Individual interviews – separate sexes.
- Household interviews
- Direct measurement of field characteristics (slopes, presence of soil protection measures, soil structure & texture, O.M. fertility, biological activity)
- Plant diversity transects
- Maize yield estimation from sample plots before harvest.
- Laboratory analysis
- Focus Group discussions
Parameters measured

Four Broad Well-being/resilience Parameters

- Economic,
- Environmental,
- Social and
- Cultural

Sub-parameters - examples

- See also field-work manual for details.

Cropping diversity, food availability, yields, scarcity periods, soil biological activity, soil resistance to erosion, soil fertility, water and energy access, income, market engagement, community solidarity and more.
Sampling

Farms
10 agroecological farms/farm families and 10 conventional farms/farm families of similar size and physical and topographical conditions

Timing
Two study periods –

a. time of plenty and
b. time of constrained food and economic circumstances.

Dry (November through April) and rainy (May through October) seasons over the period 2016-2017
General Context – Tacana and Sibinal, western Highlands

Maps removed for copyright reasons.
General Context

- Malnutrition incidence level of 55% (MSPAS, INE, and ICF Internacional 2015).
- Poverty at or above 84.4%
- Steep terrain, high altitude
- Lack of access to infrastructure and to social services.
- Migration to Mexico is common and disrupts social structures.
Limitations of the research

- Very small sample.
- Semi-conventional rather than fully conventional was compared to agroecological.
- Did not take whole farm productivity/yield measurements—thus unfair comparison of polycropping to less diverse system.
- Very short study—just 2 seasons.
Results - Income

Statistically significant differences were found for gross agricultural income.
Comparison of annual net income

<table>
<thead>
<tr>
<th>Agricultural produce</th>
<th>Agroecology</th>
<th></th>
<th>Semi-conventional</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry season</td>
<td>Rainy season</td>
<td>Total net income</td>
<td>Dry season</td>
</tr>
<tr>
<td>Cereals</td>
<td>-669.29</td>
<td>0.00</td>
<td>-669.29</td>
<td>-1112.86</td>
</tr>
<tr>
<td>Legumes</td>
<td>890.55</td>
<td>161.01</td>
<td>1051.56</td>
<td>-41.99</td>
</tr>
<tr>
<td>Vegetables and herbs</td>
<td>5069.29</td>
<td>1795.28</td>
<td>6864.57</td>
<td>399.15</td>
</tr>
<tr>
<td>Roots, tubers and bulbs</td>
<td>2011.29</td>
<td>446.72</td>
<td>2458.01</td>
<td>214.17</td>
</tr>
<tr>
<td>Fruits</td>
<td>558.53</td>
<td>328.08</td>
<td>886.61</td>
<td>393.70</td>
</tr>
<tr>
<td>Medicinal plants</td>
<td>525.98</td>
<td>299.34</td>
<td>825.32</td>
<td>215.88</td>
</tr>
<tr>
<td>Livestock</td>
<td>711.29</td>
<td>886.48</td>
<td>1597.77</td>
<td>868.24</td>
</tr>
<tr>
<td>Total</td>
<td>9097.64</td>
<td>3916.91</td>
<td>13014.55</td>
<td>936.29</td>
</tr>
</tbody>
</table>
Cash Income from trading

Wilcoxon, $p=0.0351$
Diversity of plant species

<table>
<thead>
<tr>
<th>Media de especies</th>
<th>Agroecológico</th>
<th>Convencional</th>
<th>Productores</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>13.69</td>
<td>26.75</td>
<td>39.81</td>
</tr>
</tbody>
</table>

$p=0.0236$
Number of cultivated plant species according to season

<table>
<thead>
<tr>
<th>Household</th>
<th>Number of plant species cultivated during the dry season</th>
<th>Number of plant species cultivated during the rainy season</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>16</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>A2</td>
<td>12</td>
<td>13</td>
<td>12.5</td>
</tr>
<tr>
<td>A3</td>
<td>28</td>
<td>27</td>
<td>27.5</td>
</tr>
<tr>
<td>A4</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>A5</td>
<td>15</td>
<td>16</td>
<td>15.5</td>
</tr>
<tr>
<td>A6</td>
<td>43</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>A7</td>
<td>29</td>
<td>34</td>
<td>31.5</td>
</tr>
<tr>
<td>A8</td>
<td>43</td>
<td>58</td>
<td>50.5</td>
</tr>
<tr>
<td>A9</td>
<td>13</td>
<td>18</td>
<td>15.5</td>
</tr>
<tr>
<td>A10</td>
<td>29</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>C1</td>
<td>8</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>C3</td>
<td>14</td>
<td>19</td>
<td>16.5</td>
</tr>
<tr>
<td>C4</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>C5</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>C6</td>
<td>17</td>
<td>22</td>
<td>19.5</td>
</tr>
<tr>
<td>C7</td>
<td>6</td>
<td>13</td>
<td>9.5</td>
</tr>
<tr>
<td>C8</td>
<td>10</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>C9</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>C10</td>
<td>28</td>
<td>32</td>
<td>30</td>
</tr>
</tbody>
</table>
Consumption of the staple food maize

Families consume a similar amount of maize regardless of their production system and season.

Junk food consumption

• Agroecological families claim to eat no junk food or drinks, while semi-conventional families eat junks food between twice pre week and daily.
Maize yields

Ave Yield
Agroecological = 2t/Ha

Ave Yield
semi-conventional = 1.82t/Ha

The yield differences are **not significantly different**.

Conclusion:

Even in the absence of synthetic fertilization and with mixing several more plant species in their maize fields, agroecological producers are able to keep up with their conventional peers.
Dependence on purchased food

- Semi-conventional families spend double on grocery shopping than agroecological ones,
- Which suggests that the former are less economically efficient and more dependent on purchased food items than the latter.
Social organisation

• Agroecological families seem to be better organised and have access to stronger solidarity networks.

Few gender differences observed

• Gender differences were observed in regard to schooling. Agroecological families seem to distribute schooling opportunities more evenly (15 girls and 15 boys) than their semi-conventional peers (15 girls and 23 boys)
Agroecology-based farmers are more resilient than their semi-conventional peers because of a more diversified production system, a higher agricultural income, and a stronger social network.
Summary of results

<table>
<thead>
<tr>
<th>Consultancy headings</th>
<th>Attributes</th>
<th>Criteria</th>
<th>Indicators</th>
<th>Relation between agroecology-based (A) and conventional (C) farmers</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food security</td>
<td>Resilience</td>
<td>Diet composition</td>
<td>Household dietary diversity index</td>
<td>A≈C</td>
<td>0.6323</td>
</tr>
<tr>
<td>Household economy</td>
<td>Productivity</td>
<td>Efficiency</td>
<td>Market integration</td>
<td>A>C</td>
<td>0.0072***</td>
</tr>
<tr>
<td></td>
<td>Resilience</td>
<td>Diet composition</td>
<td>Maize consumption</td>
<td>A≈C</td>
<td>0.4212</td>
</tr>
<tr>
<td></td>
<td>Productivity</td>
<td>Efficiency</td>
<td>Gross agricultural income</td>
<td>A>C</td>
<td>0.0351*</td>
</tr>
<tr>
<td></td>
<td>Stability</td>
<td>Natural resource conservation</td>
<td>Fuelwood consumption</td>
<td>A≈C</td>
<td>0.1572</td>
</tr>
<tr>
<td></td>
<td>Productivity</td>
<td>Efficiency</td>
<td>Harvest index</td>
<td>A≈C</td>
<td>0.1597</td>
</tr>
<tr>
<td></td>
<td>Productivity</td>
<td>Efficiency</td>
<td>Maize yields</td>
<td>A≈C</td>
<td>0.5039</td>
</tr>
<tr>
<td>Soil management</td>
<td>Stability</td>
<td>Natural resource conservation</td>
<td>Invertebrate abundance in topsoil</td>
<td>A≈C</td>
<td>0.0826</td>
</tr>
<tr>
<td></td>
<td>Resilience</td>
<td>Adjusted technology</td>
<td>Soil conservation practices</td>
<td>A≈C</td>
<td>0.0682</td>
</tr>
<tr>
<td></td>
<td>Stability</td>
<td>Natural resource conservation</td>
<td>Soil organic matter</td>
<td>A≈C</td>
<td>0.0236***</td>
</tr>
<tr>
<td>Plant diversity</td>
<td>Reliability</td>
<td>Agro-diversity</td>
<td>Cultivated plant species diversity</td>
<td>A>C</td>
<td>0.0674 >0.9999</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>Agro-diversity</td>
<td>Plant diversity Hedge row diversity index</td>
<td>A≈C</td>
<td>0.8994</td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>Equity</td>
<td>Gender roles</td>
<td>Women in agriculture</td>
<td>A≈C</td>
</tr>
</tbody>
</table>

*Significance levels: *p* < 0.05, **p** < 0.01, ***p** < 0.001.
Lessons learnt for future research

- Find truly conventional farmers for comparison with the agroecological ones.
- Do whole cropping productivity comparisons/Ha.
- Perform the study over at least a three year (six seasons) period.
- Take a far bigger sample of farm families.

- Use Net primary Productivity (NPP) and Land Equivalent Ratios (LER) for yield measurements,
- Take into account the savings when inputs are not purchased and
- Measure labour costs.
Trocaire References and Resources

https://www.trocaire.org/resources/policyandadvocacy/el-futuro-de-la-alimentacion-y-retos-de-la-agricultura-para-el-siglo-xxi

Trocaire (draft 2015). Trócaire's approach to sustainable agriculture. 4-pager.

Some references 2

Acknowledgements – Thanks to:-

• The 20 farmers who patiently facilitated the study including sample diggings in their smallholdings.

• Red Kuchubal, Quetzaltenango, Trocaire’s partner and host of the study.

• Pablo Prado Cordova, Alexandra Praun, Claudia Jeronimo and team at FAUSAC, University of Guatemala who were contracted to carry out the study.
Thanks! Keep in touch.
Rose.hogan@trocaire.org